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Aklmel. A model which is an infinite-component generalization of the six-vertex model 
is proposed. The method of solution is based on a random walk representation of states. 
The Bethe ansatz equations for periodic boundary conditions are obtained. The partition 
function of the finite model with special airow configurations at the boundary of a square 
is given. In c o n l r ~ s t  to analogous solutions of Korepin and Baxter, i t  has the form of an 
evaluable determinant. 

1. Introduction 

Since the solution of the ice, F and KDP models by Lieb [l, 21, much attention has 
been given to generalizations of the six-vertex model. The most well known results 
obtained in this direction are Baxter’s solution of the symmetric eight-vertex mode! 
and the hard-hexagon model [3]. The other line of generalization is an adaptation of 
the Bethe ansatz and related techniques to multicomponent systems on two-dimensional 
lattices. These include the Potts model [4], the O( N )  model [SI, various non-intersecting 
string models [6-8], the Z ( n )  x Z ( n )  model of Belavin [9], the generalized six-vertex 
model [ 101; see [ 111 for a review. 

In spite of the variety of models solved to date, all of them have a common property: 
a finiteness of the number of components or vertex configurations. In this paper we 
pursue two aims. First, to present an exactly solvable model with an unbounded number 
of components. Second, to solve the model on a finite lattice of N x N sites with fixed 
boundary conditions. A similar problem arised firstly in the course of calculations of 
norms of Bethe wavefunctions for the quantum nonlinear Schrodinger equations [12] 
and for the quantum Heisenberg chain [13]. 

For two-dimensional classical models, this problem is equivalent to calculations 
of the partition function for a finite lattice. Korepin [ 141 obtained the partition function 
of the six-vertex model on a finite square with special boundary conditions. Properties 
of this solution were exploited by Izergin [15] to find the partition function in the 
form of a determinant. Baxter [16] suggested a new method called the perimeter Bethe 
ansatz which permits the finding of a solution of the Z-invariant six-vertex model on 
an arbitrary bounded lattice. In  spite of the closed form, the partition functions obtained 
in [14, 151 and [16] are merely formal solutions as they contain sums of an increasing 
number of terms and some delicate limits need be taken in order to extract an explicit 
solution. The model suggested in this paper, with the boundary conditions used in 
[14], has a solution in the form of an evaluable determinant. 

0305-4470/91/051045+ 13503.50 @ 1991 IOP Publishing Ltd 1045 
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This paper is organized as follows. In section 2 the model is formulated and various 
boundary conditions are discussed. In section 3 the method of derivation of the Bethe 
ansatz equations [ 171 based on a random walk representation of the states of the model 
[18] is outlined. In section 4 this method is applied to the case of periodic boundary 
conditions for the lattice drawn diagonally. In section 5 we present the solution of the 
model on a finite square with Korepin’s boundary conditions [14]. Section 5 is devoted 
to a short discussion. 

2. The model 

Firstly we consider the ordinary six-vertex model on a square lattice. It can be related 
to the two-component models: each bond of the lattice accepts one of two possible 
states. The states of bonds are denoted usually by arrows pointing left or right on 
horizontal bonds and up or down on verticai ones. The ice condition requires that 
there are precisely two arrows pointing into each vertex and two out. 

In the general six-vertex model, each of the vertices has a distinct Boltzmann weight: 
w , ,  w 2 ,  w, .  w.,, w s ,  w6.  The problem consists in determining the partition function 

where the product is over all lattice sites and the sum is over all arrangements 
of the arrows allowed by the ice rule. The ice model will he obtained by setting 
w ,  = w z = .  . .= w e =  1. 

Now, let us suppose that each horizontal bond contains either one arrow pointing 
left or an arbitrary number of arrows pointing right. The remaining vertical bonds 
remain are two state. We require that the numbers of right arrows on two adjacent 
horizontal bonds differ by not more than 1.  The possible arrangements of arrows for 
an arbitrary number rare  shown in figure 1. If we assume that the case r = 0 corresponds 
to a left arrow, then figure 1 shows all possible vertex configurations with r = 0, 1,2,. . . . 
The six-vertex model results from the formulated model if one restricts the possible 
values of r to 0 and 1 in the cases ( a ) ,  ( b )  and to the single value r = O  in the cases 
( c ) ,  ( d )  in figure 1.  

We will denote the Boltzmann weights of vertices by w J r ) ,  wb(r ) ,  w d r ) ,  w d ( r ) .  
Putting all weights w.( r )  = 1 ( v  = a, b, c, d) one obtains a generalized ice model. If one 
considers the vertical coordinate of a lattice site as a discrete time, the model obtains 
a dynamical interpretation. Let x,, . . . , x, (xI > xz> . . . > x,,) be the positions of the 
arrows pointing down in a row j .  According to the formulated rules, the next row j +  1 
contains new positions of such arrows xi , .  . . , xh obeying x:> x, for all i = 1,2,. . . , n. 
We will interpret an arrow pointing down in the row j as a particle at the moment j .  

( 0 1  ( b l  (c I ( d l  
Figure 1. Arrow configurations allowed at a vertex. 
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Then the arrow arrangements on the lattice represent all possible one-side random 
walks of n hard-core particles. Such a dynamics differs from that defined by the 
six-vertex model. In the latter case all particles perform one-side random walks 
restricted by the condition that the coordinate of an ith particle at the moment j +  1 
does not exceed the coordinate of an ( i +  1)th particle at the moment j 111. Our model 
permits all possible increments of particle coordinates obeying the single rule of no 
overtaking of each particle by a preceding one. So, we may call the introduced model 
a one-way traffic model. 

Besides the arrow notation, one often uses the line representation by drawing a 
line along a bond instead of each right or down arrow. A typical state of a lattice row 
in this representation is shown in figure 2. We can see that there exists a line conservation 
law analogous to that for the six-vertex model. Ascribing the weight x to each line on 
a horizontal bond and the weighty to each vertical one, we get the Boltzmann weights 
of vertices shown in figure 1: 

(2) , + ! I 2  112 w,( r )  = x'y wb( r )  = x' w c ( r ) = w d ( r ) = x  y . 

It can be seen that the model with the weights (2) belongs to a class of models with 
a different number of states on horizontal and vertical bonds, which was investigated 
in [19]. 

Figure 2. Typical arrangements of lines in adjacent rows. 

Let us now draw attention to the boundary conditions. Firstly, consider the square 
lattice of M rows and N columns and assume periodic conditions in the horizontal 
direction. It is clear that for any arrangement of arrows in a row, fulfilling the generalized 
ice rule, there exists an arrangement which has R additional arrows on horizontal 
bonds, where R is an arbitrary positive integer. Therefore the mmber of arrow 
configurations per lattice site is infinite even for a finite number of columns. To make 
this number finite, it is enough to restrict the number of arrows r in some column of 
horizontal bonds, breaking the periodicity of the lattice. 

The other possibility to get a finite number of configurations per site is to define 
periodic boundary conditions for the lattice drawn diagonally (figure 3). In this case, 
fixing the number of lines n in a cross-section of a cylinder, we get a finite number of 
arrow configurations in each row of vertices. The number of lines passing along a 
given bond does not exceed n. In the thermodynamic limit N + a, 11 +a, n /  N = p = 
constant, the number of possible states on a bond tends to infinity, and, the entropy 
S ( p )  becomes a continuous function of p. Obviously, S ( p )  increases monotonically 
when p - 00. 

Lastly we tum the lattice once more through ~ r / 4  and achieve the situation shown 
in figure 4. Here, as in the above case, one may investigate the p dependence of the 
entropy in the whole range O < p  <W.  

In the next section we will obtain the Bethe ansatz equation for the diagonal 
boundary conditions. These equations can be generalized to an arbitrary angle of 
rotation by using the method suggested in [171. 
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Figure 3. Typical arrangements of  lines on the lattice rotated through n l 4 .  

Figure 4. The lattice rotated through n / 2  

3. The method 

The method which will be used to solve the model formulated in section 2 is based 
on the random walk representation of states of the system [17,18]. In the case of 
models with a fixed number of components and for simple boundary conditions this 
method is completely equivalent to the transfer matrix technique. The random walk 
representation becomes useful when the number of permissible vertices grows infinitely 
with the lattice size and also when boundary conditions prevent the use of the 
translation-invariant transfer matrix. 

We start rotating the lattice through nl4 and considering periodic boundary 
conditions. h e  lattice 2 consists of M rows, each of them containing N sites. To 
state the correspondence between vertex configurations and random walks, we consider 
a ring consisting of 2 N  points on which n random walks take place. The walks are 
supposed to start from lattice points, situated at even distances from each other, and 
to proceed as follows. At times f = 1,2, .  , , , M all walks make a step over one lattice 
spacing in one or another direction independently of the previous steps and indepen- 
dently of each other, except when two or more walkers have arrived at the same lattice 
point. If one draws the world lines of this set of walkers, plotting the position 
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horizontally and time vertically, one observes a similarity with the line representation 
of our model. 

The trajectories of the  random walks are restricted by the generalized ice rule: two 
or more walkers being at the same point can make simultaneous right steps but not left. 

As usual, we begin an enumeration of possible configurations of the model with 
the case n = 1. This case corresponds obviously to a single unrestricted random walk 
of -bf s t e p ,  We wi!! ascribe the weigh! x eix !Q each right step 2nd the Fpight y 
to each left one. Let us introduce the generating function of all !-stepped trajectories 
of a single random walk: 

W , ( k ) = ( ~ e " + y e - ' ~ ) ' .  (3) 

The coefficient of e ikA in W , ( k )  is equal to a number of all possible walks starting at 
x, and ending at x, + A after f steps. 

Consider now n random walks starting at the points x, ,  x 2 , ,  . . , x,. Our aim is to 
express the number of all possible trajectories of n restricted walks of M steps by the 
generating functions WM ( k l ) ,  . . . , W, ( k , )  of n simple unrestricted random walks. 

Following the Bethe ansatz prescription, we define a sum with certain coefficients 
a b ) :  

zz a(P)W,(k, i , ) )W,(kP, , , ) .  . . W,(kq , , j )  (4) 
P 

over n! permutations of numbers 1,2,. . . , n. The 'wavenumbers' k , , , , ,  k,,,,, . . . , k,,,, 
correspond to random walks starting at xI, x2,. . . , x,, for each permutation P. The 
goal is to choose a complex-valued function a ( p )  so that the contribution from all 
forbidden configurations of n walks cancel out. Then 

Z, =I 4 p ) F , ( k p i , , ,  . . . , kp ,J  ( 5 )  

where F,(k, , , , ,  . . . , kpl . , )  is a weighted sum or a generating function of all configur- 
ations of n walks obeying the generalized ice rule. The walks described by F, are 
labelled by kP(il and ordered. The ordering means that for every two walks with initial 
positions xi and 3 ihe diiierence of the increments &(i) and A,i(i)  obeys A,( i )  - A j ( i ) <  
( x j - x j )  for all f > O .  

Let us now suppose that the set { k )  is such that 

and also assume periodic boundary conditions in both vertical and horizontal directions. 
Then each walk becomes closed. In this case 

ZM = F M ( O , O , .  . . ,O) E a ( P )  (7) 
P 

because the total weight of closed walks originating from the factors e'', and e-'', 

rotations of the  restricted walks around the torus in a given configuration. Due to ( 6 )  
this factor equals unity. 

The function on the right-hand side of (7) is just the one we want to find. By the 
definition of F M ( k , ,  , . . , k") we have 

1 1 - 1  1 -! :- ".._f~?: k l r / L  I L  I + 1, ! ..,ha*- 1 ir +ha n..-hn- A F C . ~ , & ~ A  _-..- 
, , - I , & ,  .. , , ", I D  C+,,AL", ' ," ,  I -2 I . . . R,,, *".l*lr 1 .a ,LA.. I.Y.I."I. V. ",..'...".."U" 

FM(O,O, ..., O ) = A M ~ ( n )  (8) 
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where A M N ( n )  is the partition function of all allowed configurations of n walks on 
the M x N lattice with periodic boundary conditions. 

The additional factor X a ( p )  in ( 7 )  does not play any role in the limit of a very 
long cylinder or torus if a (  p )  is a bounded function of k , ,  . . . , k. independent of M 
which yields 

I / M  

M-o) lim (; a ( p ) )  = 1. (9) 

From (3), (4) and (8) we obtain the free energy per site: 

where 

A. = A ( k , )  . . . h ( k , )  

A ( k )  = x e'* + y e-'*. 

(11) 

(12) 
Now, we have to find values of k , ,  . . . , k, which obey (6) and a ( p )  for which the 
walk configurations violating the generalized ice rule will cancel out. 

with 

4. Bethe ansatz equations 

Consider two walks with wavenumbers p and q passing through a certain site of 2. 
Let P and Q be two permutations of { k }  in which p and q exchange their positions: 
P { k }  =. . . p, 4..  .and Q { k }  =, . , q , p . .  , . In figure 5 four possible continuations of 
walks corresponding to the permutation P are shown. For the permutation Q one must 
exchange the positions of p and q. The wavy lines denote a continuation of the 
unrestricted random walks. 

According to definitions of the preceding section the weighted sum over all t-stepped 
walks from the given site in the case of figure 5(a) is 

Y 2  w r - , (p )W, - , (q )  (13a)  

and in the cases of figures 5 ( b ) ,  5(c)  and 5 ( d )  respectively 

xy e-'q+'P w ,-l(P)w,-,(q) (136)  

x2 w-, ( p )  w-, (9 ) .  ( 1 3 4  

The cases of figures 5 ( a )  and 5 ( b )  d o  not satisfy the rules of the model, so they must 
be eliminated. 

xy e-'P+i'l w r-dp)W,-,(q) ( 1 3 ~ )  

(a) (b) I C )  (d l  
Figure 5. Four possible walk configuralions at a site. Cases ( a )  and ( b )  must be eliminated. 
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Let A($) and A(Q) be the weight factors of two walks at a given site, multiplied 
by the coefficients a ( P )  and a(Q) .  Using (13) we can write the cancellation conditions 
as follows: 

Defining the function B ( p ,  9) by the identity 

we get 

Equations (14) and (15) provide the generalized ice rule condition for two-particle 
collisions. The essential property of the introduced model is the following: the permuta- 
tion properties defined by (14)-(16) ensure the fulfilment of the generalized ice rule 
in the case of collision of more than two walkers at a given site. Indeed, !et us consider 
m particles being at a given site a t  the same moment. A permutation P puts in 
correspondence to these particles the wavenumbers k,,,,, k,,,,, . . . , k,,,,,). Due to 
conditions (14)-(16) applied to particles 1 and 2 only those continuations of the 
trajectories remain which fulfil the ice rule and for which particle 1 remains 'free', i.e. 
it has two possibilities to step from the given site while particle 2 can go only right. 
Using this fact, we consider the pair 1 and 3 independently of particle 2, and again 
we will obtain a 'free' motion of particle 1, and the deterministic step of particle 3. 
Prnceeding kther, we c i n  prove the gcnerz!izcd ice rz!c for I" zrhitriry ncmber of 
particles colliding at a site. Following the trajectories of walkers from the top row to 
the bottom one we delete from (4) all forbidden configurations. 

Now consider the weight factors A(P) and A(Q) in more detail. Denote by xo and 
x,+S the initial positions of two walks with wavenumbers p and q. Let x. be a 
coordinate of a site where the walkers collide. Then the weight factor at the point xc 
for the permutation P has the form 

w* 1 ( 1 7 ~ )  ~ ( p )  = ei~(xc-xoJ ej&-".-6)a( 

and for the permutation Q 

wc 1 (17b) 

where a( w,) is the Boltzmann weight of the walks originating from factors x or y 
ascribed to each right or left step, respectivity. Substituting (17) into (15) we obtain 

a(P) = a(Q)B(p, 9 )  (18) 

Further, let xy, x;, . . . , x: be the initial positions of the walkers with wavenumbers 
k , ,  , . . , k, in the permutation P. Denote the difference x,k, -x: by Sj , j+ ,  . The cyclic 
permutation Q = { 2 , 3 , .  . . , n, 1) gives the coefficient a(Q)  associated with a ( P )  by 

A(Q)= a(Q)  e'q(xc-5) eiD'"c-"o-"~( 

a ( p )  = a ( Q )  n B ( k , ,  k j )  e i6 ,>(x>-k~)  ... ei'~,-~,.,~k,,-k#l, (19) 
j = 2  
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On the other hand the relative positions of the walkers in P and Q coincide. So, we 
must satisfy the identity a ( P )  = a(Q). This condition gives 

Noting that 

L a,,,+, = 2 N  (21) 
j = ,  

one can represent the right-hand side of (20) as 

e 2 i k ~ N ~ ( ( k ) )  

where 

~ ( { k } ) =  n e- i~, . , - lk , .  (22) 
j - l  

As the thermodynamic properties of the model in the limit of an infinitely long cylinder 
( M  + w) do  not depend on the initial positions of particles, we can put all equal 
to each other. Note that it is not necessary to associated the choice of 8j, j+l with the 
real initial positions of walks because one can always ascribe an arbitrary initial factor 
to the weight of a walk. 

As mentioned above, we must find the set { k }  which obeys ( 6 ) .  Then from the 
identity of all ~5~ ,~+ , ,  it follows that 

D ( { k } )  = 1. (23) '. 

Using (22) and (23) we may rewrite (20) in the standard form 

e2"JN = - n B(k,, kr). 
i = 1  

As usual, we have n equations for k , ,  k,, . . . , k,. These can be solved and then (10) 
and (11) give the free energy density for our model. 

In this paper we shall not consider the solution of (24). Instead, we shall find a 
complete solution of the problem for a finite square lattice with the boundary conditions 
described in [14]. 

5. Finite lattice 

Consider a square of size N x N and define the boundary conditions as follows. Put 
an arrow pointing right ( r  = 1) on each horizontal bond in the left-most column. 
Further, let each horizontal bond in the right-most column be provided with an arrow 
pointing left ( r  = 0). Also put an arrow up on each vertical bond in the upper row and 
an arrow down on each vertical bond in the lower row. In the line representation, we 
get typical configurations such as the one shown in figure 6 for the case N = 6 .  The 
problem consists in the enumeration of all possible line configurations TN for an 
arbitrary N. 



We 

A vertex model with an unbounded number of components 

6 
5 

4 

3 

2 

1 

1 2 3 4 5 6  

Figure 6. Korepin's boundary conditions for the square. 

:gin with the consideration of an auxiliary problem on a sen 
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- . .  nfinite strip 
of width N. The new boundary conditions are clear from figure 7. They coincide with 
the preceding case with the exception of vertical bonds in the lower row. No direction 
of arrows on these bonds is fixed. 

Consider directed random walks on the strip starting at the points (1.11, 
(1,2), . . . , (1, N )  and ending at the lower boundary. The generating function of walks 
starting at the point (1, n )  has the form 

W,,(k) = y " A " ( k )  (25)  

where 

(26)  
1 

A ( k ) = -  
1 - x  eik 

is the generating function of all possible motions in a given row. As the number of 
vertical bonds is the same for all configurations, we can choose y = 1 without loss of 
generality. 

Foiiowing the method outiined in section 4, we write a sum over permutations of 
the number 1 ,2 , .  . . , N similar to (4): 

Z N  =I 4 P ) W , ( k P ( I , ) ~ ~ ~  W N ( b W , ) .  (27) 
D 

6 

5 

4 

3 

2 

1 

Figure 7. The auxiliary model on the semi-infinite Strip, 
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The cancellation condition for forbidden configurations can be found as in section 4. 
For a pair of permutations P and Q such that P { k )  = . . . p ,  4.. . and Q { k )  = . , ,9, p .  . . we 
have similarly to (16) 

Note that two walkers colliding at a point with the horiznn!;l! cnnrd_in;lte x hzvp the 
same factor eik(p-q) fo r both permutations P and Q. Therefore, by the definition of 
the coefficients a ( P )  and A($) it follows that 

.I,. L .I. L .L.. C..,C. _._I . . . I ~ ~  . wc n a v c  wuwn BDUVC inai iuiiirrneni 01 me generaiizeo ice ruies for iwo pariicies 
guarantees their fulfilment for any number of particles colliding at a lattice site. The 
factorization of B ( p ,  q )  given by (28) plays an essential role in the derivation of a 
closed expression for the partition function. 

It is easy to check that the coefficients a (  p )  obeying (28) and (29) must have the form 

a(~)=S.~A(k,i,i)A~(k,i,i). . . A N ( k p c N , )  (30) 

where S,, = 1 for even permutations and 6, = -1 for odd ones. 
Inserting (30) into (27) we get 

ZN = E  S,A2(kri,))A4(kpca). . . A 2 N ( k r c N , ) .  (31) 
P 

0:: the ether hand, due !e cance!!etinn nf fcxbiddex conf..guratiens *we have 

ZN =X a(p)F(k~ci i , .  . . ~PINI)  (32) 

where F is the generating function of N random walks on the strip restricted by the 
collision rules. The desired number of line configurations on the square TN is deter- 
mined by the first term in an expansion of the function in the left-hand side of (32):  

To find TN, we rewrite (31) and (33) using the Vandermond determinants: 

N 

( 3 j  ?N,. \ 
ZN A -  (K,J  del 

, = I  

where 
I 

1 (1-xe"I)' ( ~ - x e " ~ ) ~  ... (1-xe'ks)2cN-1) 

(35) ............................................... 

and 
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where 
e l N - l l i k ,  1 e2ik,  

1 eik2  e2iX2 e lN- l l ik2  
. . .  
... M* = ............................ 

e ( N - l l i k N  . . .  1 eCkh e 2 i k N  

(37) 

F.,.,,..",inn *La ,4~*a-...:"""* :" /,", L̂.̂ :_ 
l " Y . Y Y L L B . 6  L l l L  "CLCIIIIII'SIIII L11 { J + ,  w c  ""Ld,,, 

det M ,  = n [ ( 1 - x eix-z)2 - ( 1 - x 
m > n  

n [(2-xe"..-xe'x.,)(e'x .,._ (38) - - XN(N-11/2 

m > n  

Equation (38) gives the first term of the x-expansion: 

1. (39) d e t M ,  ,XN(N--1112 2 N ( N - I l l 2  det ~ , + ~ ( X N ~ N - l l / 2 + 1  

Taking into account that 

lim x-0 A(kj) = 1 j =  1,. . . , N (40) 

(41) 

and comparing (36) and (38) we finally get 
T~ =2N(N--IIlZ 

There is another way to  extract TN from the comparison of (31) and (33). Let us 
choose a term in the sum of (33), for example 

exp[i( k2+ 2k ,  + 3 k,+ . . . + ( N  - 1) kN )I 
and find !he coefficient of this term in (31). To this goal we write (31) in the form 

N 

)'. (42) X N - I )  ( 1  - x  zN= n A ~ ~ ( $ ) ~ S ~ ( ~ - X ~ ' ~ ~ ~ ~ ~ )  . . .  
,=I P 

According to (32), all terms in the latter sum of an order less than xN1""12 cancel 
e=!. Then !he cnntribc!io~ !e !he desired cneEcie~! frem B permn!a:iec p is. 

where 

is the binomial coefficient. We put, as usual, 

if m i  n. 

matrix a( i , j ) :  
The total contribution t o  TN from all permutations equals the determinant of the 
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Comparing the obtained result with (41) we get an interesting formula? 

(45) 

5. Discussion 

The molecular freedom per site defined by 

W =  lim ~z~~ 
N-m 

is W = due to (41). This result permits us to obtain an upper bound for the molecular 
freedom of the ice model W,,, with Korepin's boundary conditions [14]. Indeed, the 
number of states of the six-vertex model does not exceed the one for the considered 
model. Therefore we have 

wces Jz< ( 3 3 ' 2 .  (47) 

The latter quantity is the known result of Lieb [ I ]  for the ice model with periodic 
boundary conditions. 

It is interesting to note that In TN given by (41) is the sum of a bulk term which 
is proportional to N 2  and asurface one proportional to N. Thus all finite-size corrections 
are exactly equals to zero. 

For models which possess conformal invariance the I /  "-order corrections to the 
free energy are governed by the central charge of the Virasoro algebra. The absence 
of correction terms means, probably, that the model with Korepin's boundary condi- 
tions is out of criticality. 

The examination of conformal properties of the presented model is of considerable 
interest because the form of the 'scattering function' B( p ,  q )  indicates that the model 
takes on an intermediate place between the free and interaction fermion models. Indeed, 
B( p ,  q )  depends on p and q but is factorizable. It is interesting to check whether the 
factorization leads to the free fermion value of central charge e=$. 

t Similar combinatorical arguments lead to the more general formula 

det 
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Thermodynamic properties of the model with periodic boundary conditions 
obviously depend on the activities x and y. In particular, it is easy to find a line of 
phase transitions bounding the ordered phase. Similarly to the six-vertex model, the 
critical values of x and y can be found from the consideration of one-particle 
excitations of the ground state ( n  = 1). Writing the generating function (3) of a complex 
variable z, 

W , ( z ) =  A'(z) =(xz+ yz-I) '  (48) 

we get x, and y ,  from the condition lzol < 1 where zo is a root minimal in absolute 
value of the equation A(z) = 1. Finding zo we get x,+ y e =  1. The form of the singularity 
at the critical point needs a detailed investigation of the Bethe ansatz equations (16) 
and (24). 
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